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Abstract 

Industrial Engineering (IE) has continually evolved to optimize systems and processes, 

addressing the demands of an ever-changing industrial landscape. From its historical roots in 

work organization to its current role in Industry 4.0 and the emerging Industry 5.0 paradigm, 

IE has remained central to fostering innovation, efficiency, and sustainability. Industry 4.0 has 

revolutionized industrial systems through the integration of Cyber-Physical Systems (CPS), the 

Industrial Internet of Things (IIoT), and advanced data analytics, enabling real-time decision-

making and resource optimization. Building on this foundation, Industry 5.0 shifts the focus to 

human-centric, ethical, and sustainable practices, leveraging advanced technologies such as 

cognitive digital twins, collaborative robots, and resilient systems to enhance human-machine 

collaboration and environmental responsibility. This study explores the evolution of IE, its 

foundational principles, and its critical role in addressing modern industrial challenges. It 

highlights strategies for advancing the IE profession and academic programs, ensuring their 

relevance in the digital era. Additionally, it identifies six future research directions, including 

Human-AI collaboration, Adaptive and resilient systems design, advanced sustainability 

models, ethical and inclusive systems design, digital twin integration, and quantum computing, 

as key enablers for driving innovation and achieving global sustainability goals. By bridging 

the technological advancements of Industry 4.0 with the human-centric and sustainable 

objectives of Industry 5.0, IE is positioned to lead the transformation of industrial systems, 

fostering a resilient, inclusive, and sustainable future. 
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1. Introduction 

Industrial Engineering (IE) lies at the intersection of engineering, management, and 

technological innovation, aiming to design, optimize, and sustain complex industrial systems 

(IS). Over its long history, IE has demonstrated a remarkable capacity to evolve in response to 

changing industrial demands [1,2]. From the optimization of manual labor in early civilizations 

to leveraging cutting-edge digital technologies today, IE has consistently focused on improving 

productivity, efficiency, and sustainability [3]. As a discipline, it has played a pivotal role in 

shaping industrial revolutions, from mechanization in the first Industrial Revolution to the 

introduction of lean systems and automation in the late 20th century [4,5]. 

In the current era, IS face unprecedented challenges and opportunities brought about by 

the rise of Industry 4.0 (I4.0), characterized by the integration of advanced technologies such 

as Cyber-Physical Systems (CPS), the Industrial Internet of Things (IIoT), Artificial 

Intelligence (AI), and big data analytics (BDA) [6,7]. These technologies enable the creation 

of smart factories with capabilities for real-time monitoring, predictive maintenance (PdM), 

and autonomous decision-making [8,9]. Through the use of digital twins (DTs), for example, 

industries can simulate and optimize production processes, resulting in reduced downtime and 

enhanced resource efficiency [10]. However, the rapid adoption of these technologies has also 

brought about challenges, including cybersecurity risks, ethical dilemmas in AI usage, and the 

marginalization of human roles in automated environments [11,12]. 

Recognizing these challenges, Industry 5.0 (I5.0) has emerged as a response, emphasizing 

human-centric and sustainable IS. Unlike its predecessor, which prioritized automation and 

efficiency, I5.0 seeks to harmonize technology and human involvement by fostering 

collaboration between humans and intelligent systems [13]. Technologies such as Human-

Robot Collaboration (HRC), cognitive DTs, and Explainable AI (XAI) enable workplaces that 

are safer, more inclusive, and more adaptive to human needs [14,15]. Moreover, I5.0 

emphasizes the integration of sustainability principles into industrial practices, aligning with 

global initiatives such as the United Nations Sustainable Development Goals (SDGs) [16]. 

In this evolving context, IE is uniquely positioned to bridge the gap between technology 

and human-centric IS. Its core competencies in systems design, process optimization, and data-

driven decision-making provide the necessary foundation for addressing modern industrial 

challenges. By integrating emerging technologies into traditional practices, IE can drive 

innovation in areas such as smart manufacturing, supply chain (SC) resilience, and adaptive 

production systems [17,18]. Furthermore, IE contributes to achieving sustainability by 

optimizing energy use, reducing waste, and enabling circular economy (CE) models [19,20]. 

This study seeks to position IE as a cornerstone in the era of I4.0, I5.0, and beyond by 

addressing several key objectives. First, it provides a historical perspective on the evolution of 

IE, tracing its journey from early practices to its current integration with advanced digital 

technologies. Second, it explores the principles of IE, contextualizing its foundational concepts 

within the frameworks of I4.0 and I5.0 to highlight their relevance in modern IS. Third, it 

discusses strategies for advancing the IE discipline, including enhancing its academic 

programs, fostering industry partnerships, and adapting to the rapidly changing industrial 

landscape [21,22]. 

The present study further identifies future research directions that are critical for 

advancing the discipline, including Human-AI collaboration (HAC), the design of adaptive and 

resilient systems, and the integration of quantum computing (QC) into industrial applications. 

For example, research into HAC aims to enhance the synergy between human expertise and 

AI-driven decision-making, ensuring greater trust, transparency, and adaptability in complex 
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industrial environments [23–25]. Similarly, resilient system design focuses on enabling IS to 

withstand and recover from disruptions, whether from SC shocks or environmental challenges 

[26–28]. The potential of QC, meanwhile, offers transformative capabilities for solving 

optimization problems in manufacturing and supply chains that are currently beyond the reach 

of classical computing methods [29–31]. 

Through this comprehensive review, the study aims to demonstrate the critical role of IE 

in driving innovation, sustainability, and human-centric design in modern industries. The 

insights provided herein will serve as a roadmap for researchers, practitioners, and 

policymakers, offering actionable strategies to harness the full potential of IE in shaping the 

future of IS. Ultimately, the study highlights how IE is not only a field of study but a catalyst 

for addressing global challenges and advancing industrial transformation. 

This paper is structured to provide a comprehensive exploration of IE in the context of 

I4.0, I5.0, and beyond. Section 2, The Evolution of Industrial Engineering, traces the historical 

trajectory of IE, highlighting its transformation from early work organization principles to 

modern digital and human-centric paradigms. Section 3, Principles of Industrial Engineering, 

identifies and elaborates on the foundational principles that guide the discipline, showcasing 

their relevance in addressing contemporary challenges. Section 4, Advancing Industrial 

Engineering Discipline, delves into strategies for strengthening the profession, with 

subsections 4.1 and 4.2 focusing on enhancing the IE profession’s visibility and modernizing 

academic programs to reflect emerging industry demands. Section 5, Future Research 

Directions, outlines six critical areas of research that will shape the discipline’s progression, 

including HAC, resilient systems, and QC. Finally, Section 6, Conclusion, synthesizes the 

insights presented and emphasizes the pivotal role of IE in fostering innovation, sustainability, 

and inclusivity in the modern industrial landscape.  

2. The Evolution of Industrial Engineering 

The evolution of IE is deeply rooted in historical advancements and societal needs, evolving 

through several key phases (Fig. 1). From its early foundations in ancient civilizations, where 

concepts of work organization and logistics were applied in large-scale projects like the 

construction of pyramids, to the mechanization of production during the Industrial Revolution, 

IE has consistently sought to improve efficiency and productivity [32]. Over time, the 

discipline embraced scientific management principles, pioneered by Taylor and the Gilbreths, 

which laid the groundwork for optimizing work processes through time and motion studies. As 

industries recognized the importance of human factors, the Human Relations Movement 

integrated worker satisfaction and ergonomics into IS [1]. 

In the mid-20th century, the Systems Approach and Operations Research (OR) expanded 

IE's focus to optimizing complex systems, aided by advancements in computing. This era 

introduced tools like linear programming, queuing theory, and simulation modeling, which 

remain central to modern IE practices [33–35]. The rise of automation and robotics in the 1970s 

and 1980s marked another transformative period, with the adoption of Computer-Integrated 

Manufacturing (CIM) systems, lean manufacturing (LM), and Just-in-Time (JIT) production. 

The globalization era further refined IE with lean thinking, Six Sigma (SS), and the need for 

efficient global SCs. 

The emergence of I4.0 has brought about a revolution in IE by integrating Cyber-Physical 

Production Systems (CPPS), IIoT, drones, AI, and BDA [36–38]. These technologies enable 

real-time communication between machines, edge devices, and cloud systems, fostering smart 

manufacturing environments with distributed management functionalities [9]. However, the 

full potential of I4.0 lies not only in technological adoption but also in addressing the 

operational and safety challenges posed by such complex systems [39]. 
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Fig. 1. Evolution of industrial engineering: key milestones, timelines, principles and tools 

Building on these advancements, I5.0 introduces a new dimension that emphasizes human-

centric and sustainable production systems. Unlike its predecessor, which focused on 

automation and efficiency, I5.0 integrates advanced technologies such as cognitive DTs and 

edge computing to enhance real-time decision-making and collaboration between humans and 

intelligent systems [40]. This paradigm shift fosters inclusivity, sustainability, and resilience in 

industrial operations, aligning with broader socio-economic and environmental goals [16,41]. 

In I4.0, IIoT platforms have become essential for monitoring and optimizing production 

processes, facilitating PdM and efficient resource allocation. For instance, integrating 

blockchain with IIoT has proven effective in creating transparent and sustainable SCs by 

providing real-time tracking and incentivizing eco-friendly practices [42]. However, challenges 

such as task scheduling in cloud-fog-edge environments and ensuring system reliability 

through advanced fault-tolerant mechanisms remain critical research areas [43]. 

I5.0 builds upon these advancements by leveraging technologies like Safety 4.0, which 

integrates AI, IoT, and robotics to enhance workplace safety and productivity [43]. Moreover, 

the incorporation of sustainable and resilient practices into IS is a cornerstone of this new era, 

as seen in the development of secure communication frameworks and privacy-preserving 

systems for real-time industrial data exchange [40]. These innovations ensure operational 

efficiency while prioritizing ethical considerations and worker well-being. 

The adoption of I4.0 and I5.0 principles across various sectors has highlighted the dynamic 

capabilities required for successful integration. Research has identified key enablers such as 

sensing, seizing, and reconfiguring resources to adapt to rapidly changing environments [44]. 

Furthermore, innovative solutions like immersive virtual environments for operator training 

and cognitive DTs for real-time process optimization exemplify the transformative potential of 

these technologies [16,45]. 

Despite these advancements, significant gaps remain in fully realizing the potential of I5.0. 

Issues such as cybersecurity in interconnected systems, data privacy, and the ethical 

implications of AI-driven decision-making need to be addressed [46]. Additionally, the 

integration of these technologies in developing regions presents unique challenges, including 
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limited infrastructure and skill gaps, which must be overcome to achieve inclusive and 

sustainable industrial growth [41]. 

Therefore, the evolution of IE from its historical foundations to I4.0 and I5.0 represents a 

profound transformation. By focusing on advanced technologies, human-centric designs, and 

sustainability, IE is poised to lead the next wave of industrial innovation, addressing global 

challenges and shaping a more inclusive and resilient future. 

3. Principles of Industrial Engineering 

This section presents the foundational principles of IE as they relate to the evolving paradigms 

of I4.0 and I5.0 (Fig. 2). These principles were identified through a comprehensive literature 

review conducted using the ScienceDirect database, focusing primarily on publications from 

2024 and 2025, with some inclusion of relevant works from 2023. The analysis encompasses 

a wide range of journals, which were ranked according to the number of selected publications 

that contributed to the discussion. Fig. 3 visually depicts this ranking, highlighting journals 

such as Journal of Manufacturing Systems, Computers & Industrial Engineering, and Journal 

of Cleaner Production as the most frequently referenced sources. By examining these 

principles through a contemporary lens, this section aims to demonstrate their relevance in 

addressing the challenges and opportunities of modern industrial systems. 

 

Fig. 2. Twelve key principles of industrial engineering in the context of Industry 4.0 and Industry 5.0 
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Fig. 3. Ranking of journals based on the number of selected publications contributing to the discussion of 

industrial engineering principles in the context of I4.0 and I5.0. 

3.1 Systems Thinking 

The IE has long been underpinned by systems thinking, a holistic approach that enables the 

analysis, optimization, and management of complex systems. This foundational principle has 

gained renewed significance with the advent of I4.0, characterized by the integration of CPS, 

IoT, and DTs. These technologies have fundamentally reshaped industrial operations by 

enabling real-time data exchange, PdM, and dynamic system optimization [47]. As the 

industrial landscape evolves toward I5.0, the focus shifts to human-centric system designs, 

emphasizing collaboration between humans and machines. This transition indicates the 

importance of balancing technological advancements with human well-being and sustainability 

to create resilient and adaptive IS [28]. 

In I4.0, CPS serves as the cornerstone of innovation, bridging the physical and digital 

realms to enable intelligent, interconnected systems [48]. These systems, such as CPPS, utilize 

sensor data and control algorithms to enhance manufacturing efficiency, scalability, and 

flexibility [49]. For example, CPS enables smart factories to dynamically optimize production 

processes in response to real-time data. However, ensuring the security and reliability of CPS 

remains a pressing challenge amid escalating cyber threats. Solutions like the PB-fdGAN 

framework enhance Collaborative Intrusion Detection Systems (CIDS) by leveraging federated 

learning to detect threats while preserving data privacy [47]. Blockchain-enabled decentralized 

systems, such as TRIPLE, further bolster CPS by ensuring secure and trusted communication, 

thereby improving system reliability and decision-making [50]. The integration of DTs 

enhances these capabilities by providing real-time monitoring and predictive analytics, 

enabling precise energy management and process optimization [51,52]. 

While I4.0 focuses on technological convergence, I5.0 emphasizes the human element, 

fostering environments where humans and machines collaborate seamlessly. This shift is 

exemplified by the rise of Industrial Metaverses, where virtual and physical systems interact to 

support enhanced decision-making and productivity [53]. Human-centric system designs are 
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increasingly supported by frameworks like the Extended Iterative Process Sequence 

Exploration (eIPSE), which automates production step configurations in CPPS, minimizing 

inefficiencies and improving reproducibility [54]. Furthermore, I5.0 integrates sustainable 

practices, such as IoT-enabled ultra-precision machining (UPM), which employs real-time 

error compensation and multi-objective optimization to align manufacturing processes with 

ecological and societal goals [55]. 

The transition to smart factories is largely driven by systems optimization, encompassing 

resource allocation, process scheduling, and energy management. Innovations like the Energy 

DT simulate and adjust production parameters in real-time, leading to significant cost and 

energy savings [51]. Similarly, smart SCs leverage IoT and BDA to achieve end-to-end 

visibility and predictive insights. Blockchain technology (BT) enhances these SCs by 

improving transparency and traceability, ensuring resilience and sustainability even in the face 

of global disruptions [56]. 

Despite the strides made, several challenges persist in adopting systems thinking in IE. 

Managing the complexity of control software variants in CPPS development requires 

multidisciplinary coordination and advanced tools [49]. Additionally, securing reliable 

communication in 5G-enabled CPS ecosystems is critical to mitigating the risk of system 

failures [57]. To address these challenges, formal verification methods such as Timed 

Computation Tree Logic (TCTL) are increasingly employed to validate the operational 

reliability of frameworks like FedGA-Meta under diverse scenarios [58]. 

Notably, systems thinking remains pivotal in advancing IE practices for both I4.0 and I5.0. 

By integrating CPS, IoT, and human-centric frameworks, the industrial sector is evolving to 

achieve greater resilience, sustainability, and collaboration. Continued research and innovation, 

coupled with robust security mechanisms and formal verification techniques, will enhance the 

reliability and optimization of these systems, paving the way for future breakthroughs. 

3.2 Process Optimization 

The IE is dedicated to enhancing efficiency, productivity, and quality in production systems. 

At its core lies process optimization, a principle that has advanced significantly with the rise 

of I4.0 and I5.0. These industrial revolutions have introduced cutting-edge technologies to 

streamline operations, reduce waste, and improve overall system performance. While I4.0 

focuses on data-driven, technology-enabled improvements, I5.0 emphasizes human-machine 

collaboration (HMC) and sustainable, customized production. 

In I4.0, technologies like the IoT, AI, and Machine Learning (ML) enable smart 

manufacturing by collecting and analyzing vast amounts of real-time data. This data-driven 

approach facilitates informed decision-making and precise process control. IoT enhances real-

time monitoring by capturing high-dimensional, nonlinear data, which is crucial for optimizing 

manufacturing systems. For instance, IoT-enabled platforms in heat pump manufacturing use 

multivariate time series data to identify key variables through causal inference, improving 

model accuracy and reducing monitoring costs [59]. Similarly, AI frameworks such as ECS-

Net leverage 1D Convolutional Neural Networks (1DCNN) to achieve a 93.7% fault detection 

rate in wind power systems, significantly reducing energy loss [60]. In HVAC systems, AI-

driven Artificial Neural Networks (ANN) dynamically adjust indoor conditions, leading to a 

16% efficiency gain [61]. Simulation tools like Tecnomatix Plant Simulation further enhance 

system performance by allowing manufacturers to test production scenarios, achieving a 15% 

improvement in flexibility and output [62]. DTs, by creating real-time virtual replicas of 

physical systems, optimize production processes such as laser-directed energy deposition 

(DED), enabling precise control of temperature profiles for improved material properties [63]. 
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While I4.0 prioritizes technological convergence, I5.0 introduces a human-centric 

approach, focusing on hybrid automation and mass personalization. Advanced scheduling 

systems integrate heuristic algorithms and deep reinforcement learning to optimize multi-stage 

manufacturing processes, minimizing waste and enabling manufacturers to efficiently meet 

unique customer demands [64]. Dynamic SC optimization, driven by hybrid models that 

combine IoT and BT, improves inventory and cost management while ensuring sustainability 

[65]. Moreover, AI-enabled frameworks such as EWDO-LSSVM enhance predictive accuracy 

for smart irrigation systems, enabling personalized agricultural solutions with an 87.5% 

accuracy [66]. These advancements showcase the potential of I5.0 to foster greater 

collaboration between humans and machines while aligning manufacturing processes with 

ecological and societal goals. 

Applications of process optimization span diverse areas in I4.0 and I5.0. In smart 

buildings, Convolutional Neural Network (CNN)-IoT frameworks optimize energy 

management by predicting usage, detecting inefficiencies, and improving demand response 

with an 88% prediction accuracy [67]. IoT-based DWM-Evac models enhance fire emergency 

evacuation by leveraging real-time data for dynamic path planning, reducing evacuation times 

by 25 seconds compared to traditional methods [68]. In additive manufacturing (AM), the 

combination of CNN and the NSGA-II algorithm optimizes 3D printing parameters, resulting 

in a 53% improvement in mechanical performance [69]. 

In the era of I4.0 and I5.0, process optimization remains a cornerstone of industrial 

advancements. By harnessing IoT, AI, simulation, and hybrid automation, industries are 

achieving unprecedented levels of efficiency, flexibility, and sustainability. These technologies 

position IE as a vital discipline in modern manufacturing, driving the transition toward smart, 

human-centered, and sustainable IS. 

3.3 Lean Manufacturing and Six Sigma 

Lean Manufacturing (LM) and Six Sigma (SS) have long been essential methodologies in IE, 

aiming to eliminate waste, improve operational efficiency, and ensure high-quality outcomes. 

While LM focuses on streamlining processes by reducing non-value-adding activities, SS 

employs data-driven methods to minimize variation and defects [70]. With the emergence of 

I4.0 and I5.0, these principles have evolved, integrating advanced digital technologies and 

human-centered approaches to further enhance efficiency, sustainability, and adaptability in 

modern IS [71]. 

The advent of I4.0 has revolutionized LM by incorporating digital technologies such as 

IoT, AI, big data, and CPS. This evolution, known as Lean 4.0, enables real-time data collection 

and analysis to optimize workflows, identify inefficiencies, and reduce waste [72]. IoT sensors, 

for instance, monitor machine performance to facilitate PdM, minimizing downtime and 

improving productivity. BDA further streamlines operations by identifying bottlenecks and 

enhancing production flexibility. Costa et al. [73] demonstrated the integration of LM and I4.0 

through ISM-MICMAC analysis, identifying critical variables for a structured framework to 

achieve environmental sustainability. This alignment not only enhances operational efficiency 

but also supports global sustainability goals. 

In I5.0, LM evolves into a more human-centric framework, emphasizing collaboration 

between human expertise and advanced automation. This paradigm leverages human creativity 

and intuition to address complex problems that automated systems cannot resolve. For 

example, Tetteh et al. [74] explored Lean 4.0 adoption in Ghana’s pharmaceutical sector, 

highlighting the importance of integrating human decision-making with digital tools. Their 

findings highlight how management commitment and the synergy between human expertise 

and automation drive long-term quality and performance improvements. 
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The SS, when combined with I4.0 technologies, enables precise quality control through 

advanced analytics and real-time monitoring. DTs, for instance, simulate production processes, 

allowing for early defect detection and optimization. Nakandala et al. [71] emphasized that 

lean practices drive I4.0 adoption by fostering exploitative learning, which enhances 

operational performance through defect reduction and consistent quality control. By leveraging 

these technologies, SS ensures that manufacturing processes meet stringent quality standards 

while maintaining efficiency. 

Sustainability has emerged as a key focus in the evolution of LM. Sustainable Lean Six 

Sigma (SLSS) frameworks, such as the one proposed by Utama and Abirfatin [75], integrate 

lean principles with green initiatives to improve the Manufacturing Sustainability Index (MSI). 

Tools like Sustainable Value Stream Mapping (Sus-VSM) and Failure Mode and Effect 

Analysis (FMEA) help identify and mitigate inefficiencies while promoting environmentally 

friendly practices. Similarly, Sodkomkham et al. [76] demonstrated how Material Flow Cost 

Accounting (MFCA) and IoT can enhance water use efficiency in the beverage industry, 

aligning Lean’s waste reduction philosophy with environmental sustainability. 

Leadership and organizational culture play a crucial role in successfully implementing 

Lean principles in the digital age. Gatell and Avella [77] identified lean leadership 

competencies such as customer orientation, continuous improvement, and problem-solving as 

vital for fostering a culture of innovation and adaptability. Additionally, Saradara et al. [78] 

proposed a framework that integrates Lean Project Delivery Systems (LPDS) with CE 

principles, enhancing resource efficiency and minimizing waste throughout a product’s 

lifecycle. 

The application of Lean 4.0 and SS extends beyond traditional manufacturing to sectors 

such as healthcare, logistics, and construction. Javaid et al. [79] illustrated how Lean 4.0 

reduces medical errors and waste in healthcare, improving overall efficiency. In the 

construction industry, Dara et al. [70] demonstrated the use of Lean tools like JIT and Total 

Quality Management (TQM) to minimize inefficiencies in precast production processes. These 

applications highlight the versatility of Lean and SS in driving efficiency and quality across 

various industries. 

Despite their benefits, integrating Lean and SS with I4.0 technologies presents challenges, 

including high implementation costs, resistance to change, and a lack of digital skills among 

workers. Bueno et al. [72] emphasized the need for clear frameworks and success factors to 

overcome these barriers. In I5.0, the challenge lies in balancing automation with human-centric 

approaches. Salvadorinho et al. [80] stressed the importance of fostering a culture that respects 

human input while leveraging technology to achieve sustainable and efficient operations. 

The integration of LM, SS, and I4.0 technologies signifies a transformative shift in IE. By 

adopting real-time digital tools and fostering human-centered approaches, industries can 

achieve unparalleled levels of efficiency, quality, and sustainability. As research and 

implementation frameworks evolve, I5.0 offers exciting opportunities to redefine operational 

excellence, blending technology and human expertise for a more adaptive and resilient 

industrial future. 

3.4 Human Factors and Ergonomics 

Human Factors and Ergonomics (HFE) is a cornerstone of IE, dedicated to designing systems 

that optimize human performance while ensuring safety, comfort, and well-being. As industries 

transition from I4.0 to I5.0, the role of HFE has expanded to address both the usability of 

advanced technologies and the holistic well-being of workers. This evolution shows the 

importance of intuitive user interfaces, collaborative robots (cobots), and ergonomically 

optimized workplaces, ensuring that human-system interactions are efficient, safe, and 

supportive [81]. 
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In I4.0, the integration of advanced technologies such as the IoT, AI, and DTs has created 

highly interconnected manufacturing systems. While these innovations enhance productivity, 

they also introduce complexities in human-system interactions, necessitating the design of 

user-friendly interfaces. Smart interfaces simplify these interactions by reducing cognitive 

overload and improving decision-making. For instance, multi-robot collaborative wire arc AM 

systems benefit from calibration methods that transform complex spatial data into manageable 

user interfaces [82]. Similarly, visual-inertial fusion systems enhance human motion tracking 

in collaborative environments, improving efficiency and reducing errors [81]. DTs, pivotal in 

I4.0, allow operators to monitor and control processes with precision, but their effectiveness 

depends on presenting data in clear, comprehensible formats. Integrating DTs with immersive 

technologies like Virtual Reality (VR) creates intuitive environments, enabling seamless 

interactions with virtual models and bridging the gap between complex data and actionable 

insights [83]. 

I5.0 builds upon these technological advancements by shifting the focus toward human-

centric manufacturing. This paradigm integrates worker well-being into industrial processes 

through ergonomically sound workplaces, cobots, and technologies that support mental and 

physical health. Cobots, designed to work alongside humans, perform repetitive or physically 

strenuous tasks, reducing injury risks and enhancing productivity. These robots, equipped with 

AI, optimize task execution in real time, ensuring smooth HRC and minimizing idle time [84]. 

In assembly lines, cobots assist with hazardous or complex tasks, demonstrating their potential 

to enhance both safety and operational efficiency [85]. Worker fatigue, a significant concern in 

high-intensity environments, can be addressed through dynamic fatigue models that evaluate 

physical and cognitive exhaustion levels. Task reallocation based on these models ensures safe 

and efficient operations by redistributing workloads between humans and robots when fatigue 

thresholds are reached [86]. 

Smart factories in I5.0 further integrate cognitive and physical ergonomics to create 

adaptive work environments that prioritize safety and efficiency. VR tools are increasingly used 

to design ergonomic workstations, allowing real-time assessments of physical and cognitive 

risks. Fu et al. [87] developed a VR-based framework for modular construction manufacturing, 

which ensures ergonomic risks remain within acceptable ranges. Similarly, Augmented Reality 

(AR) provides real-time task guidance, helping workers maintain proper posture and reduce 

strain during repetitive tasks. AR-assisted layouts overlay visual instructions onto physical 

workspaces, ensuring precise task execution and minimizing errors [88]. 

Beyond physical ergonomics, I5.0 emphasizes cognitive and emotional well-being 

through human-centric design principles. Human Digital Twins (HDTs) represent a novel 

approach to integrating human characteristics into manufacturing systems, providing 

personalized feedback on posture, movement, and workload. This reduces the risk of 

musculoskeletal disorders while optimizing performance [89]. HDTs align with the goals of 

I5.0 by preserving privacy and focusing on worker well-being. Additionally, technologies like 

Augmented Reality Head-Up Displays (AR-HUDs) improve situational awareness and reduce 

mental workload in high-stress environments, such as aviation or complex manufacturing 

systems [90]. Adaptive transparency in automated systems further enhances operator trust and 

decision-making by providing clear, comprehensible feedback [91]. 

Despite significant advancements, fully integrating HFE principles into I5.0 presents 

challenges. Ethical concerns, such as ensuring data privacy in systems like HDTs, require 

careful consideration. Bridging the technological gap between physical and virtual systems is 

essential for seamless HRC. Moreover, managing the cognitive load associated with complex 

interfaces is critical to maintaining worker efficiency and safety. Future research should focus 

on developing standardized ergonomic frameworks, enhancing AI-driven HRC systems, and 

fostering interdisciplinary collaboration to address these challenges [92,93]. 
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To this end, HFE plays a vital role in advancing IE as the industry transitions from I4.0 to 

I5.0. By designing user-friendly interfaces, integrating cobots, and prioritizing worker well-

being, HFE ensures that technological advancements benefit both industrial efficiency and 

human needs. These innovations enhance productivity while fostering a safe, inclusive, and 

resilient industrial ecosystem, marking a significant step toward achieving the human-centric 

goals of I5.0. 

3.5 Supply Chain Management 

Supply Chain Management (SCM) is a critical principle of IE, dedicated to optimizing the flow 

of goods, services, information, and finances from raw material suppliers to end consumers. In 

recent years, the advent of I4.0 and I5.0 has reshaped SCM by integrating advanced 

technologies to improve efficiency, resilience, and sustainability. This transformation has 

enabled SCs to address modern challenges such as global disruptions, environmental concerns, 

and the evolving expectations of consumers [94,95]. 

The I4.0 paradigm revolutionizes SCM through digitization and interconnected systems, 

utilizing technologies such as blockchain, the IoT, and real-time analytics. Blockchain 

enhances transparency and security by providing immutable transaction records, which is 

particularly valuable in sectors like agri-food and pharmaceuticals, where traceability and trust 

are crucial [94]. IoT devices enable real-time monitoring and PdM, minimizing disruptions and 

improving operational efficiency [96]. For example, blockchain-based traceability systems in 

the agri-food sector have been shown to enhance logistics and inventory management, while 

simultaneously boosting consumer confidence in product authenticity [97]. Moreover, Supply 

Chain Digital Twins (SCDTs) create virtual models of SC processes, enabling businesses to 

simulate disruptions and implement proactive measures to ensure resilience [98]. AM 

complements these advancements by decentralizing production, reducing dependency on 

complex SCs, and enhancing agility. This approach not only promotes customization but also 

mitigates the risks associated with SC disruptions [99–101]. 

Building on the technological foundation of I4.0, I5.0 introduces a human-centric and 

sustainable approach to SCM. This paradigm emphasizes collaboration between humans and 

intelligent systems to create adaptive SCs that address environmental, social, and economic 

challenges. Circular Supply Chain (CSC) models exemplify this shift by focusing on resource 

recovery and waste reduction. Frameworks like m-TISM and MICMAC facilitate the 

development of closed-loop systems that enhance sustainability and profitability, as seen in 

solar photovoltaic recycling initiatives [102,103]. I5.0 further prioritizes resilience, with food 

SCs designed to withstand climate challenges and ensure food security [104]. Blockchain-

driven traceability systems ensure product authenticity while aligning with consumer demand 

for sustainable goods, enhancing both operational efficiency and environmental responsibility 

[105]. Additionally, strategies like reverse logistics and DTs optimize resource utilization and 

reduce environmental impacts, aligning with global sustainability goals [106]. 

The incorporation of emerging technologies like Additive Digital Molding (ADM) 

illustrates the potential of I5.0 to foster both agility and sustainability in SCs. By combining 

digital reverse engineering, AM, and plastic injection molding, ADM empowers small and 

medium-sized enterprises (SMEs) to localize production and reduce dependence on global 

sourcing. This not only enhances business flexibility but also supports SDGs by minimizing 

resource waste [107]. Blockchain, IoT, and DTs play a central role in driving these 

transformations. Blockchain secures SC data, reducing fraud and improving trust, while IoT 

enables real-time tracking and predictive analytics, reducing lead times and enhancing 

customer satisfaction [60,96,108]. DTs allow businesses to simulate and optimize SC 

processes, ensuring more informed decision-making and greater operational efficiency 

[98,109,110]. Meanwhile, CSC models encourage the transition from linear to circular 
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frameworks, prioritizing resource reutilization and waste recovery to support sustainable 

manufacturing [111,112]. 

Despite the promising benefits, the integration of I5.0 principles into SCM faces 

challenges. Financial constraints, technological barriers, and the need for organizational 

readiness often hinder the seamless adoption of these innovations. Overcoming these obstacles 

requires proactive management support and stakeholder engagement. Frameworks like 

interpretive structural modeling (ISM) and hybrid optimization models have proven effective 

in addressing critical challenges and enhancing SC resilience [102,113]. Successful case 

studies further demonstrate the transformative potential of these advancements. Blockchain-

based traceability systems in the agri-food sector improve product quality and reduce food 

waste, contributing to a decarbonized SC [104,114,115]. In the pharmaceutical industry, multi-

objective optimization models balance cost, environmental impact, and social factors, 

improving overall resilience and efficiency [116]. Similarly, in the electric vehicle (EV) sector, 

blockchain facilitates the recycling of retired power batteries, ensuring traceability, 

profitability, and reduced environmental impact [117]. 

The integration of I4.0 and I5.0 technologies into SCM represents a paradigm shift, 

transforming traditional SCs into systems that are more efficient, adaptive, and sustainable. By 

leveraging innovations such as blockchain, IoT, DTs, and CE principles, SCM achieves 

unprecedented levels of transparency, efficiency, and environmental responsibility. These 

advancements firmly position SCM as a vital component of IE, playing a pivotal role in 

addressing global challenges and driving sustainable development for the future. 

3.6 Quality and Reliability Engineering 

Quality and reliability engineering (QRE) form the bedrock of IE, aiming to ensure consistent 

performance, defect reduction, and operational excellence across production systems. With the 

emergence of I4.0 and I5.0, these principles have undergone a significant transformation, 

leveraging advanced technologies to optimize maintenance and quality assurance processes. 

PdM and real-time quality control (RTQC) have become key enablers of efficient and 

sustainable manufacturing, while human-augmented systems in I5.0 emphasize collaboration 

between humans and intelligent systems to enhance production outcomes. 

In I4.0, PdM plays a crucial role by utilizing IoT, BDA, and AI to forecast equipment 

failures and schedule maintenance proactively. By continuously analyzing data from sensors 

monitoring machine conditions, PdM reduces unexpected downtimes, improves productivity, 

and minimizes operational costs [118]. Advanced frameworks like MachNet, which leverage 

deep learning, adapt to diverse PdM scenarios, enabling accurate health state (HS) and 

remaining useful life (RUL) predictions [119]. IoT-enabled condition monitoring systems 

further enhance PdM by tracking critical machine parameters, such as engine speed and fuel 

consumption, providing real-time insights for robust decision-making [120]. ML algorithms, 

including LSTM and Random Forest, have demonstrated exceptional accuracy in predicting 

failures, addressing data heterogeneity, and improving system reliability [121]. These 

advancements make PdM indispensable in modern manufacturing, ensuring optimal resource 

utilization and uninterrupted operations. 

Real-time quality control systems, another cornerstone of I4.0, leverage BDA and ML to 

detect deviations during production processes instantly. These systems enable zero-defect 

manufacturing (ZDM) by employing anomaly diagnostics, drift detection, and advanced 

techniques such as XAI to enhance transparency in fault diagnosis [122]. Tools like DTs 

simulate and monitor production processes in real time, allowing manufacturers to optimize 

quality assurance and operational efficiency [123]. XAI methods, such as Local Interpretable 

Model-Agnostic Explanations (LIME), provide interpretable fault explanations, empowering 

operators to make informed decisions and maintain consistent product quality [124]. These 
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systems exemplify how I4.0 technologies enable continuous quality improvement through 

data-driven insights. 

I5.0 builds on the advancements of I4.0 by integrating human intuition, creativity, and 

decision-making with intelligent systems to foster human-centric and sustainable 

manufacturing. Human-augmented quality assurance systems utilize tools such as AR and AI 

to enhance inspection processes and improve product customization. AR interfaces provide 

real-time visualization of complex data, enabling operators to make quick and accurate 

decisions in challenging manufacturing environments [125]. Frameworks like Maintenance 5.0 

emphasize sustainable and socially responsible operations by combining AI-driven tools with 

human-centered strategies. For instance, PackMASNet, a continual learning-based model, 

optimizes quality inspections while minimizing resource consumption, ensuring sustainability 

in mass customization scenarios [126]. These human-augmented systems align with I5.0’s 

goals of achieving both technological innovation and worker well-being. 

Maintenance 5.0 integrates predictive capabilities with human-centric approaches to 

achieve sustainable maintenance in ZDM environments. This framework highlights the 

importance of addressing environmental, social, and human factors in QRE [127,128]. 

Advanced decision support systems, which combine predictive insights with anomaly 

explanations, allow operators to take timely corrective actions, ensuring optimal machine 

performance and reducing waste [129]. By fostering collaboration between humans and 

intelligent systems, Maintenance 5.0 sets the stage for sustainable and adaptive manufacturing 

systems. 

TQM remains a foundational approach to quality assurance in IE, and its integration with 

I4.0 technologies has significantly transformed traditional practices. Real-time data 

acquisition, advanced analytics, and ML enable evidence-based decision-making and 

continuous process improvement. Studies demonstrate that combining lean and agile SCM 

practices with TQM enhances productivity and sustainability, although challenges like data 

fragmentation and sensor integration persist [130,131]. In I5.0, TQM incorporates human-

centered methodologies that emphasize employee training, leadership, and cultural shifts, 

ensuring that quality systems remain adaptive to dynamic production environments [132]. 

With the integration of I4.0 and I5.0 technologies, QRE are undergoing a transformative 

evolution. PdM, real-time quality control, and human-augmented systems are redefining 

traditional practices, enabling higher efficiency, sustainability, and resilience in manufacturing. 

Future research should focus on bridging the gap between advanced data-driven methods and 

human-centric approaches to foster seamless integration, ensuring that IS continue to achieve 

optimal performance and adaptability in the face of evolving challenges. 

3.7 Sustainability and Environmental Engineering 

IE plays a pivotal role in promoting sustainability and environmental stewardship by 

developing energy-efficient, resource-optimized systems that address global environmental 

challenges. Under the principles of sustainability and environmental engineering (SEE), IE 

integrates human, financial, technological, and environmental resources to create eco-friendly 

industrial practices. The convergence of I4.0 and I5.0 technologies has transformed these 

principles, introducing innovative pathways to achieve sustainability through energy 

efficiency, CE frameworks, and low-carbon manufacturing. 

I4.0 technologies, including the IoT, AI, BDA, and DTs, enable industries to enhance 

production efficiency while minimizing environmental impact. By facilitating real-time 

monitoring, PdM, and smart resource allocation, these technologies significantly reduce energy 

consumption and material waste. For instance, Santos and Sant’Anna [133] demonstrated how 

I4.0 tools assist Small and Medium Enterprises (SMEs) in optimizing production processes, 

reducing waste, and fostering sustainability. Similarly, the sawn rubberwood industry in 
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Thailand adopted Resource Efficient and Cleaner Production (RECP) methodologies, 

achieving a 28.31% reduction in raw material intensity and a 76.23% increase in eco-efficiency 

[134]. These examples highlight how I4.0 technologies align industrial operations with global 

sustainability goals, emphasizing energy-efficient and resource-optimized production systems. 

Building upon the technological advancements of I4.0, I5.0 focuses on human-centric, 

resilient, and sustainable manufacturing practices. This paradigm emphasizes the integration 

of CE principles, which promote waste reduction, resource recirculation, and low-carbon 

production processes. Ghobakhloo et al. [135] outlined a strategic roadmap for I5.0, 

demonstrating its potential to enhance sustainable manufacturing through functions such as 

value network integration and sustainable business model innovation. The CE framework shifts 

industrial practices from linear to circular models, reducing waste and maximizing resource 

utilization. Bressanelli and Saccani [136] introduced the C-Readiness tool, which helps firms 

assess their readiness for CE practices and prioritize decarbonization actions. In Thailand’s 

rubberwood industry, for example, sawdust was repurposed as fuel, significantly lowering the 

sector's carbon footprint and enhancing resource efficiency [134]. 

Electronic waste (e-waste) management exemplifies the challenges and opportunities of 

integrating circular economy principles with I5.0 technologies. Darzi [137] proposed a 

framework combining the Best-Worst Method (BWM) and Fuzzy Vlse Kriterijumsk 

Optimizacija Kompromisno Resenje (F-VIKOR) to evaluate e-waste mitigation strategies. The 

study highlighted take-back practices as a critical approach for extending product lifecycles 

and reducing environmental harm, aligning with CE principles. Similarly, addressing carbon 

emissions through circular strategies like remanufacturing and material reuse is essential for 

sustainable manufacturing. Wandji et al. [138] demonstrated the use of product State of Health 

assessments to determine optimal take-back periods, yielding environmental and economic 

benefits. Furthermore, Liu [139] introduced a carbon emission quota allocation model using 

data envelopment analysis (DEA) to ensure equitable carbon rights distribution, promoting 

balanced industrial development and sustainability. 

Sustainable business models and decision-making tools are crucial for facilitating the 

transition to environmentally conscious industrial practices. Sharma et al. [140] identified key 

drivers for achieving carbon neutrality in Indian manufacturing firms, highlighting the 

importance of sustainable business values and supportive government policies. Meanwhile, 

Nikolakis et al. [141] proposed an eco-efficiency indicator combining life cycle assessment 

(LCA) and cost analysis (CA), offering manufacturers a quantitative methodology to 

implement CE practices. Additionally, Corsini et al. [142] examined the interplay between 

consumers and manufacturers in shaping a systemic circular transition, emphasizing the need 

for active stakeholder engagement to close the gap between circular demand and supply. 

Human-centric values are central to I5.0, creating resilient manufacturing systems that 

integrate advanced technologies with human expertise. Khan et al. [143] explored the role of 

green human capital (GHC) and green environmental strategic capabilities (GESC) in 

promoting CE practices among SMEs, demonstrating how these capabilities support the 

transition from linear to circular models. These studies emphasize the importance of fostering 

a culture of sustainability within organizations to enhance both environmental performance and 

economic viability. 

The integration of I4.0 and I5.0 technologies under IE’s SEE principles offers 

unprecedented opportunities for industries to achieve sustainable, energy-efficient, and 

resource-optimized production systems. By adopting CE frameworks and leveraging advanced 

decision-making tools, industries can reduce energy consumption, minimize waste generation, 

and lower carbon emissions. The journey toward a sustainable future requires collaborative 

efforts, technological innovation, and a steadfast commitment to environmental stewardship. 
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3.8 Operations Research and Decision Sciences 

IE, grounded in the principles of Operations Research and Decision Sciences (OR&DS), plays 

a vital role in addressing complex industrial challenges. These disciplines drive the design, 

optimization, and control of systems across sectors, ensuring resource efficiency and informed 

decision-making. The rise of I4.0 has accelerated the adoption of smart technologies, while 

I5.0 emphasizes ethical considerations, sustainability, and HMC. Together, these paradigms are 

reshaping industrial systems to be more adaptive, inclusive, and sustainable. 

I4.0 has introduced advanced optimization algorithms for resource allocation, scheduling, 

and system control. DT technology has revolutionized real-time decision-making by enabling 

data-driven simulations that optimize operational efficiency [144]. In manufacturing, tools like 

Deep Reinforcement Learning (DRL) have improved job-shop scheduling with automated 

guided vehicles (AGVs), offering scalable solutions to complex production environments 

[145]. PdM has also seen advancements, with AI-driven models like Long Short-Term Memory 

(LSTM) and Random Forest optimizing machine uptime and reducing costs [146]. Federated 

learning frameworks further enhance energy-efficient and privacy-preserving data processing 

in industrial IoT environments, highlighting the importance of real-time adaptability in smart 

manufacturing [147]. These innovations demonstrate how I4.0 technologies enhance system 

performance and operational resilience through dynamic and predictive capabilities. 

While I4.0 focuses on automation and connectivity, I5.0 prioritizes ethical and societal 

considerations, emphasizing sustainability and human-centric design. Ethical AI practices, for 

instance, have been shown to foster user trust and accelerate technology adoption in sectors 

like tourism and healthcare [148]. Sustainability frameworks, such as CE integration, link 

environmental performance with operational efficiency by promoting resource recirculation 

and waste reduction [149]. AI-driven smart building systems align technological innovation 

with community involvement and regulatory compliance, ensuring a balance between progress 

and societal well-being [150]. Moreover, strategies for green and resilient manufacturing offer 

a blueprint for sustainable competitive advantages, particularly in developing economies [41]. 

These developments highlight the shift from technology-centric models to human-centric 

frameworks, ensuring that industrial progress serves broader societal and environmental goals. 

The integration of AI into OR&DS has revolutionized traditional decision-making 

processes, providing enhanced accuracy, transparency, and scalability. XAI models, such as 

those utilizing SHAP and LIME, allow stakeholders to interpret complex data, ensuring trust 

in AI-driven decisions [151]. Hybrid optimization models, which combine ML with techniques 

like Monte Carlo simulations, have improved cost-effectiveness and resilience in SCM [152]. 

AI applications in humanitarian operations have demonstrated the potential of configurational 

analysis to optimize coordination during crises, offering scalable and efficient solutions [153]. 

Decentralized learning models, driven by edge computing, further enhance energy usage and 

resource allocation in smart cities, showcasing the versatility of AI in modern IS [147]. These 

AI-driven approaches illustrate the potential of OR&DS to provide actionable insights, 

streamline operations, and improve system resilience. 

Despite these advancements, there are emerging research areas that warrant further 

exploration. Hybrid models that integrate physical and data-driven approaches, such as those 

applied to lithium-ion battery lifecycle analysis (LCA), offer improved prediction accuracy 

[154]. Scalable optimization models, like the Heterogeneous Graph Scheduler (HGS), are 

essential for accommodating diverse manufacturing environments [145]. The need for trust and 

transparency in AI-driven technologies, particularly in healthcare and wearable devices, is 

critical for user acceptance and compliance [155]. Moreover, interdisciplinary collaboration 

that aligns digital capabilities with organizational culture can foster innovation and accelerate 

the adoption of new technologies [156]. Addressing these gaps will enable OR&DS to further 
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drive innovation in I4.0 and I5.0 ecosystems, ensuring these systems are both technologically 

advanced and ethically sound. 

With these, IE, through the integration of OR&DS, is central to the transformations 

brought about by I4.0 and I5.0. Advanced optimization algorithms and AI-driven frameworks 

enable real-time adaptability, dynamic scheduling, and predictive analytics, while the human-

centric focus of I5.0 ensures alignment with societal and environmental priorities. This synergy 

fosters innovation, resilience, and inclusivity, creating sustainable industrial ecosystems. 

However, challenges such as AI interpretability, scalability, and ethical integration must be 

addressed through continued interdisciplinary research. By leveraging technological 

advancements and prioritizing ethical decision-making, IE can lead the way toward a future 

that balances operational excellence with societal and environmental well-being. 

3.9 Simulation and Modeling 

Simulation and modeling (SM) are foundational tools in IE, offering critical insights into the 

behavior of complex systems and facilitating optimized decision-making. With the rise of I4.0 

and the subsequent shift toward I5.0, the application of these tools has expanded significantly, 

enabling real-time monitoring, HMC, and personalized production. These advancements 

leverage cutting-edge technologies such as DTs, AM, and HRC to improve system efficiency, 

enhance safety, and ensure sustainability. 

In the context of I4.0, DTs have become central to real-time system modeling and 

performance prediction. These virtual replicas synchronize with their physical counterparts, 

enabling real-time simulations, monitoring, and optimization of production processes. For 

example, DTs in AM facilitate defect detection and process optimization in real time. Makanda 

et al. [157] introduced FULAM, a federated unsupervised learning method that detects 

anomalies in Fused Filament Fabrication (FFF) machine vibration data while addressing data 

privacy and heterogeneity concerns. Additionally, DTs support dynamic scheduling in Mass 

Personalization Manufacturing (MPM), enabling real-time adjustments to meet diverse 

customer demands. Kosse et al. [10] proposed a Semantic DT-based Dynamic Scheduling 

Framework for precast concrete production, which effectively manages uncertainties through 

real-time data exchange. Enhanced process control is another critical application, with Zhang 

et al. [158] demonstrating a DT-enabled framework that dynamically adjusts assembly process 

parameters, significantly improving product quality. 

I5.0 builds on these technological advancements by emphasizing human-centricity and 

promoting seamless HMC. SM in this paradigm focus on replicating human-machine 

interactions to enhance productivity, safety, and personalization. HRC benefits from DT-based 

simulations that optimize safety and collaborative strategies. Baratta et al.  [14] explored DT 

frameworks for improving HRC safety, while Liu et al. [159] developed a maturity assessment 

framework for DTs in collaborative assembly tasks. Psarakis et al. [15] demonstrated how 

visual cues in HRC environments enhance collaborative fluency, emphasizing the importance 

of intuitive interaction modalities. Personalized manufacturing systems are another focus of 

I5.0. Zhang et al. [160] introduced a model combining modular design with personalized 

production, optimizing SC efficiency and customer satisfaction. Furthermore, reinforcement 

learning-based systems, as proposed by Qin et al. [161], enable dynamic scheduling in job shop 

environments, adapting to stochastic changes and improving production efficiency. Human-

centric simulations also play a crucial role in fatigue and ergonomic assessment, ensuring 

worker safety and comfort in HRC environments. Lambay et al. [162] reviewed ML approaches 

for detecting operator fatigue, highlighting the importance of ergonomic task design and real-

time feedback systems. 

SM have also revolutionized AM by addressing challenges such as nozzle clogging and 

inconsistent print quality. Data-driven modeling techniques, such as Shi et al.’s [163] 
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Personalized Feature Extraction (PFE) algorithm, enable real-time anomaly detection in AM 

imaging data, significantly improving print quality and process reliability. These advancements 

enhance AM’s potential for personalized manufacturing, aligning with I5.0’s goal of mass 

customization. 

Despite these advancements, challenges remain in fully leveraging the potential of SM in 

I4.0 and I5.0. Data privacy and sharing continue to be major concerns, particularly in 

centralized systems. Federated learning frameworks like FULAM provide promising solutions 

by enabling collaborative learning without compromising data security [157]. Human-Machine 

Interfaces (HMIs) present another challenge, as they must be intuitive and adaptable to enhance 

HRC. Sanfilippo et al. [164] stressed the need for a structured approach to integrating sensory 

modalities for effective collaboration. Additionally, uncertainty in dynamic production 

environments requires robust simulation models to ensure reliable system performance. Zhang 

et al. [165] proposed a multi-objective discrete bees algorithm to balance assembly lines under 

uncertain conditions, illustrating the importance of advanced modeling techniques. 

Generally, SM are integral to the successful implementation of I4.0 and I5.0 principles. 

Technologies like DTs, AM, and HRC enable real-time system optimization, personalized 

production, and enhanced human-machine synergy. To fully realize the potential of these 

advancements, future research should address challenges related to data privacy, system 

interoperability, and human-centric design. By overcoming these hurdles, SM will continue to 

drive innovation, efficiency, and sustainability in IS. 

3.10 Automation and Robotics 

Automation and robotics (AR) are fundamental principles of IE, driving transformative 

advancements in production systems through their integration with I4.0 and I5.0 technologies. 

These paradigms leverage cutting-edge innovations, such as AI, the IoT, and robotics, to 

revolutionize efficiency, precision, and sustainability in industrial processes. From fully 

automated production lines to cobots working alongside humans, the evolution of AR 

demonstrates their pivotal role in reshaping modern industries. 

I4.0 emphasizes the development of fully automated and interconnected production lines 

powered by AI, big data, and IoT. These systems enhance productivity by automating repetitive 

tasks, minimizing human intervention, and improving precision and speed. For example, 

optimized robotic energy consumption strategies have been shown to boost productivity while 

mitigating geopolitical risks that affect AI-driven industrial outputs [166]. Advances in robotic 

control, such as inverse kinematics solutions for six-degree-of-freedom robots, have further 

improved computational efficiency and accuracy, enabling more complex and adaptive 

automation [167]. Additionally, automation has significant ecological benefits. Studies reveal 

that industrial robots reduce ecological footprints across various sectors, contributing to 

environmental quality improvements on a global scale [168–170]. Moreover, the integration of 

robotic disassembly systems in CE initiatives highlights the sustainability potential of 

automation by promoting resource recovery and waste reduction [171]. 

Building on these advancements, I5.0 introduces a human-centric approach, focusing on 

cobots that work seamlessly alongside humans. This paradigm not only enhances productivity 

but also prioritizes worker well-being and safety. Cobots are designed to be contextually 

intelligent and socially adept, enabling them to interact with human workers in dynamic 

environments. For instance, advanced robotic systems that utilize infrared-thermal imaging 

improve safety in HRC settings by detecting potential hazards in real-time [172]. In industries 

like healthcare and manufacturing, cobots reduce operator workload while maintaining high 

safety and performance standards. However, balancing robotic efficiency with human-centered 

safety and adaptability remains a critical challenge, as highlighted by studies on safe human-

robot interactions (HRI) [173]. 
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The environmental and economic impacts of robotics are profound, with industrial robots 

driving green innovation and economic growth. Robots have been shown to reduce carbon 

emissions, particularly in capital-intensive industries, facilitating the transition to low-carbon 

green economies [174]. In regions like Belt and Road Initiative countries, robot integration 

significantly boosts green industrial performance, aligning industrial practices with 

sustainability goals [175]. Furthermore, robotics complement human labor by increasing labor 

income shares and addressing challenges posed by aging populations in labor-intensive sectors 

[176–178]. These advancements highlight the role of automation in promoting economic 

resilience and sustainability. 

Emerging technologies and advanced applications are expanding the scope of robotics in 

industrial settings. Integrating robotics with AI-driven systems, such as DTs  and blockchain, 

enables real-time process optimization and enhances HRC [179]. For instance, blockchain-

integrated extended reality (XR) systems have improved gearbox assembly processes by 

facilitating efficient data exchange and collision avoidance [180]. Similarly, NeRF-based 3D 

modeling enhances safety in industrial environments by optimizing robotic navigation and 

preventing collisions [181]. Beyond traditional industries, robotics is also making strides in 

space exploration. AI-enabled robotic systems have demonstrated capabilities for in-orbit 

satellite assembly, showcasing the versatility of automation across diverse applications [182]. 

Despite these advancements, the transition from I4.0 to I5.0 presents several challenges. 

Ensuring safety in HRI and addressing ethical concerns are critical areas for further research. 

Developing socially responsible robots, enhancing collaborative safety measures, and 

optimizing energy use are essential to overcoming these challenges [183]. Emerging 

innovations such as embodied AI and cooperative tele-recovery strategies show promise for 

addressing current limitations and fostering more effective HRC [184,185]. 

AR are essential drivers of efficiency, sustainability, and innovation in IE. As I5.0 gains 

momentum, the focus on human-centric and collaborative technologies will redefine the 

relationship between humans and machines. This evolution promises to foster a more 

sustainable, inclusive, and resilient industrial future, where automation supports both 

technological progress and societal well-being. 

3.11 Data Analytics and Artificial Intelligence 

The integration of Data Analytics and AI (DA&AI) within IE marks a transformative step in 

optimizing manufacturing and production systems. This principle underpins the progression 

from I4.0, which emphasizes automation and digitization, to I5.0, which seeks to restore a 

human-centric, sustainable industrial paradigm. By harnessing the power of big data, ML, and 

AI-driven decision-making, industries can enhance process efficiency, minimize waste, and 

build resilient, adaptive systems. 

In I4.0, big data and predictive analytics play a pivotal role in process optimization. The 

framework relies on CPS, the IoT, and real-time data collection, enabling actionable insights 

for PdM, inventory management, and production planning [5]. PdM, for instance, leverages 

data from IoT sensors to forecast equipment failures, thereby reducing downtime and 

maintenance costs [186]. DTs, which replicate physical systems in virtual environments, 

facilitate advanced simulations to optimize production workflows, identify bottlenecks, and 

enhance overall efficiency [21]. Furthermore, tools like cloud computing enable seamless 

integration of data from multiple sources, supporting JIT manufacturing and smart inventory 

management [22]. Virtual manufacturing platforms, enhanced by RFID technology, provide 

real-time visibility into SCs, driving improvements in operational efficiency and product 

quality [187]. These digital advancements foster autonomous decision-making, allowing AI 

systems to continuously analyze data streams and make process adjustments with minimal 

human intervention. 



19 

 

As industries transition to I5.0, the focus shifts from automation to human-centric 

manufacturing. This paradigm emphasizes ethical AI practices to ensure transparency, 

accountability, and alignment with societal values [188]. Unlike I4.0, which often marginalizes 

human roles, I5.0 fosters collaboration between humans and machines. Trustworthy AI (TAI) 

frameworks address critical concerns such as bias, explainability, and ethical implications, 

ensuring that AI-driven systems are safe and reliable [189]. HRC underscores this approach, 

with human safety and psychological well-being as top priorities [12]. XAI enhances trust by 

offering transparent models that help operators understand AI-driven decisions, thereby 

improving decision-making on the shop floor [190]. 

Human-Centric Smart Manufacturing (HCSM) exemplifies the vision of I5.0, where 

human intuition and AI capabilities are integrated to maximize productivity and safety. Human 

Digital Twins (HDTs) provide real-time insights into workers’ physical and cognitive states, 

enabling personalized adjustments to workloads and environments to reduce fatigue and 

enhance performance [17]. Cobots, exemplify this human-centric focus by handling repetitive 

or hazardous tasks, while humans focus on creative and decision-intensive responsibilities 

[191]. This symbiotic relationship ensures that the human element remains central, improving 

job satisfaction and reducing psychological risks. 

The applications of DA&AI in IS are diverse and impactful. Predictive modeling and 

maintenance systems use real-time sensor data to identify potential equipment failures, 

reducing disruptions and costs [192]. AI also supports sustainable manufacturing by optimizing 

resource use and reducing emissions, aligning with environmental, social, and governance 

(ESG) goals [19,193]. AM, enhanced by AI, improves material selection and print parameter 

optimization, enabling efficient production of lightweight and durable components for sectors 

such as aerospace and healthcare [194,195]. Energy optimization is another critical application, 

with AI systems demonstrating significant potential in reducing carbon emissions and 

improving total factor productivity in industrial operations [196]. Furthermore, HDTs enable 

comprehensive fatigue and stress monitoring, ensuring worker safety and optimizing 

performance in real time [17]. 

The integration of AI and big data also contributes to ethical governance and sustainability. 

Transparent decision-making processes, supported by AI-driven tools, enhance circular 

economy practices by optimizing resource utilization and reducing waste [197]. This alignment 

with SDGs fosters a more resilient and socially responsible industrial ecosystem [198]. 

With these regards, the evolution from I4.0 to I5.0 reveals the transformative potential of 

DA&AI in IE. While I4.0 has revolutionized operational efficiency through automation and 

digitization, I5.0 emphasizes human-centric values, ethical AI, and sustainable manufacturing. 

Future research should focus on refining HAC, addressing ethical challenges, and developing 

frameworks for adaptive, human-centered IS. By leveraging big data and AI, IE is poised to 

redefine the factory of the future, fostering seamless integration of human and machine 

capabilities for a more sustainable and inclusive industrial landscape. 

3.12 Resilience Engineering 

Resilience engineering (RE) is a fundamental principle within IE, designed to enhance the 

robustness and adaptability of systems in the face of disruptions, failures, and dynamic 

operating conditions. As IS transition from I4.0 to I5.0, RE evolves to address the complexities 

of human-centric and environmentally sustainable operations. This progression emphasizes the 

importance of designing systems that prioritize safety, operational continuity, and sustainability 

while fostering HMC and ecological responsibility. 

In the context of I4.0, RE focuses on enhancing the robustness of smart factories through 

the integration of advanced technologies such as the IoT, AI, and CPS. These technologies 

enable real-time monitoring, PdM, and automated recovery processes. For example, 
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Masuduzzaman et al. [199] proposed a framework combining unmanned aerial vehicles 

(UAVs) and automated guided vehicles (AGVs) to detect toxic gases in smart factories. This 

system employs multi-access edge computing (MEC) for secure data transmission and real-

time response, demonstrating a resilient approach to industrial safety. Similarly, Jin et al. [200] 

illustrated how smart decline strategies in urban planning can enhance adaptive capacity, 

offering insights applicable to IS for managing resource constraints and operational risks. 

The transition to I5.0 shifts RE toward human-centric and sustainable goals. This paradigm 

emphasizes the need for adaptive systems that protect human operators while minimizing 

environmental impacts. Alabdulatif et al. [11] highlight the importance of integrating CPSs 

with robust security and privacy measures to address vulnerabilities in interconnected 

ecosystems. Resilient adaptive manufacturing systems, as discussed by Mo et al. [201], enable 

programmable logic controllers (PLCs) to reconfigure automatically based on shifting 

production demands, reducing system downtime and human error. Additionally, the industrial 

metaverse framework proposed by Guo et al. [202] supports resilience in digital and social 

dimensions, facilitating immersive, adaptive industrial operations that align with I5.0's 

emphasis on human-machine synergy. 

Applications of RE span various domains. In smart production systems, Singh et al. [203] 

presented a biodiesel production framework that minimizes energy consumption and carbon 

emissions while maintaining high-quality output. Resilience in this system is achieved through 

automated inspection and remanufacturing, optimizing resource use and minimizing waste. 

Robust ML models, such as the Trusted Connection Dictionary Learning (TCDL) method 

proposed by Huang et al. [204], enhance fault detection and operational safety in IS by 

addressing label noise and ensuring reliable condition monitoring. Energy resilience is another 

critical area, as Wang et al. [205] demonstrated through a robust demand response (DR) 

framework for industrial microgrids, which enhances flexibility and reduces costs under 

fluctuating electricity prices. In manufacturing, adaptive control methods such as the robust 

predictive control for infinite-dimensional systems described by Zhang et al. [206] ensure 

stability and efficiency in dynamic environments, a key requirement for modern production 

processes. 

Despite these advancements, RE in I5.0 faces several challenges. Security and privacy 

remain critical as CPSs and IoT devices become more pervasive, requiring robust 

authentication protocols and advanced cryptographic techniques to protect data integrity and 

prevent cyberattacks [207]. Human-centric design (HD) is another priority, necessitating 

intelligent scheduling systems that ensure worker safety and comfort while maintaining 

productivity [18]. Sustainable practices are equally vital; Lockan and Kansara [208] 

emphasized the need for renewable energy integration in industrial processes, advocating for 

robust optimization methods to manage uncertainties and enhance resilience in energy systems. 

The RE is a cornerstone in the evolution of IS, bridging the technological innovations of 

I4.0 with the human-centric and sustainable objectives of I5.0. By integrating adaptive control, 

robust ML, and sustainable energy solutions, RE supports the development of secure, adaptive, 

and environmentally responsible industrial ecosystems. These advancements not only enhance 

operational efficiency but also align with broader societal and ecological goals, paving the way 

for a resilient and sustainable industrial future. 

4. Advancing Industrial Engineering Discipline 

IE operates at the intersection of several engineering and management disciplines, often 

overlapping and conflicting with fields (both engineering and non-engineering disciplines) 

such as Mechanical Engineering, Electrical Engineering, Computer Science, and Operations 

Management, as depicted in Fig. 4 and Fig. 5. While this interdisciplinary nature allows IE to 
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tackle complex, system-level challenges, it also leads to conflicts and blurred boundaries with 

rival disciplines. These conflicts typically arise in areas such as process optimization, 

automation, and data-driven decision-making, where multiple fields claim expertise [209–211]. 

The comparison Table 1 and Table 2 highlight these overlaps, showcasing where IE 

distinguishes itself by integrating technical, human, and organizational elements, and where 

conflicts can hinder its clear identity. Understanding these dynamics is essential for positioning 

IE as a unique and indispensable discipline in academia and industry. 

The IE profession and its academic programs must evolve to remain relevant and 

competitive in a rapidly changing industrial and technological landscape [212,213]. 

Strengthening the profession requires promoting its unique capabilities, embracing emerging 

technologies, and enhancing its societal impact. Simultaneously, positioning the IE degree in 

universities involves modernizing curricula, fostering industry partnerships, and improving the 

visibility of career opportunities [214,215]. This section discusses strategies for advancing both 

the profession and academic programs to ensure their continued growth and relevance in the 

era of I4.0 and beyond. 

 

Fig. 4. Intersection of industrial engineering with various engineering disciplines 
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Fig. 5. Intersection of industrial engineering with non-engineering disciplines 

Table 1 

Key overlapping and conflicting areas between IE and engineering disciplines 

Discipline Overlap with IE Conflict with IE Tools/Principles 

Materials 

Engineering 

Manufacturing 

processes, quality 

control 

Focus on material properties vs. 

system efficiency 

SPC, electron 

microscopy 

Energy 

Engineering 

Energy optimization, 

sustainability 

Macro-scale energy systems vs. 

operational energy use 

Energy audits, simulation 

Agricultural 

Engineering 

Process optimization, 

supply chain 

management 

Farm-level productivity vs. 

industrial logistics 

GIS, process flow 

diagrams 

Production 

Engineering 

Lean manufacturing, 

system optimization 

Technical depth vs. broader 

system focus 

VSM, CAD/CAM 

Chemical 

Engineering 

Process design, safety Molecular-scale focus vs. 

operational optimization 

Aspen Plus, Arena 

Processing 

Engineering 

Workflow optimization, 

sustainability 

Sector-specific focus vs. 

general optimization 

Process simulators, Six 

Sigma 

Mechanical 

Engineering 

Machine design, 

manufacturing systems 

Component-level focus vs. 

system-level optimization 

FEA, SolidWorks 

Electrical 

Engineering 

Power systems, 

automation 

Focus on electrical 

infrastructure vs. operational 

systems 

Power flow analysis, 

PLCs 

Electronic 

Engineering 

Control systems, circuit 

design 

Focus on microelectronics vs. 

industrial-scale systems 

PCB design tools, 

SCADA 

Computer 

Engineering 

Embedded systems, real-

time control 

Hardware/software integration 

focus vs. system-wide 

efficiency 

Embedded system 

design, FPGA tools 

Civil Engineering Facility layout, 

construction 

management 

Structural design focus vs. 

operational efficiency 

BIM, structural analysis 

software 
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Manufacturing 

Engineering 

Production processes, 

advanced manufacturing 

Machine-specific vs. 

workflow/system-wide 

optimization 

CAM, CNC 

programming, industrial 

robotics 

Systems 

Engineering 

System integration, 

lifecycle optimization 

High-level design vs. process-

level focus 

Systems modeling, 

MBSE 

Petroleum 

Engineering 

Process optimization in 

oil extraction and 

refining 

Reservoir-specific focus vs. 

system-level efficiency 

Reservoir simulation, 

drilling optimization 

Environmental 

Engineering 

Waste management, 

sustainability practices 

Environmental impact focus vs. 

operational efficiency 

Life Cycle Assessment 

(LCA), air quality 

models 

Automotive 

Engineering 

Vehicle production, 

automation in assembly 

lines 

Component-level optimization 

vs. system-wide workflow 

CAD/CAE, vehicle 

simulation, crash analysis 

Table 2  

Key overlapping and conflicting areas between IE and non-engineering disciplines 

Discipline Definition Overlap with 

IE 

Conflict with IE Tools/ 

Techniques 

Applications 

Business 

Administration 

Focuses on 

managing 

business 

operations, 

finances, and 

strategies. 

Operations 

management, 

supply chain 

optimization 

Strategic focus vs. 

operational 

efficiency 

SWOT 

analysis, 

financial 

modeling 

Operations 

planning, 

resource 

management 

Economics Studies how 

societies 

allocate scarce 

resources to 

produce goods 

and services. 

Cost-benefit 

analysis, 

resource 

optimization 

Macro-level policy 

focus vs. micro-

level operational 

focus 

Game theory, 

econometrics 

Pricing 

strategies, 

production 

planning 

Psychology Explores 

human 

behavior and 

mental 

processes. 

Human 

factors, 

ergonomics, 

and workplace 

productivity 

Individual 

behavior focus vs. 

system-level 

optimization 

Cognitive load 

analysis, task 

analysis 

User interface 

design, 

workstation 

layout 

Sociology Examines 

social 

behavior, 

institutions, 

and cultural 

dynamics. 

Team 

dynamics, 

organizational 

behavior 

Focus on social 

systems vs. 

industrial 

processes 

Social network 

analysis, 

surveys 

Workforce 

collaboration, 

leadership 

development 

Management 

Science 

Applies 

analytical 

methods to 

solve business 

problems. 

Decision-

making, 

operations 

research 

Theoretical focus 

vs. practical 

implementation 

Linear 

programming, 

decision trees 

Scheduling, 

logistics, 

project 

management 

Data Science Extracts 

insights from 

large datasets 

using 

computational 

and statistical 

methods. 

Data-driven 

decision-

making, 

predictive 

analytics 

Algorithm focus 

vs. system 

integration 

Machine 

learning, data 

visualization 

Predictive 

maintenance, 

process 

optimization 

Finance Manages 

money, 

investments, 

and financial 

planning. 

Cost analysis, 

investment in 

industrial 

technologies 

Profit focus vs. 

operational 

efficiency 

ROI, NPV, 

discounted 

cash flow 

Capital 

budgeting, 

financial 

feasibility 

analysis 
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Discipline Definition Overlap with 

IE 

Conflict with IE Tools/ 

Techniques 

Applications 

Environmental 

Science 

Studies 

interactions 

between 

humans and 

the 

environment. 

Sustainability 

practices, 

waste 

reduction 

Environmental 

conservation focus 

vs. production 

efficiency 

Life Cycle 

Assessment 

(LCA), carbon 

footprint 

analysis 

Green 

manufacturing, 

resource 

conservation 

Healthcare 

Administration 

Manages 

operations and 

policies in 

healthcare 

systems. 

Process 

optimization, 

patient flow 

management 

Patient care focus 

vs. industrial 

process 

optimization 

Lean 

healthcare, 

workflow 

analysis 

Hospital 

operations, 

resource 

allocation 

Information 

Technology 

(IT) 

Develops, 

implements, 

and manages 

computer 

systems. 

Automation, 

digital 

systems for 

process 

control 

Technical focus on 

software/hardware 

vs. system-level 

optimization 

ERP systems, 

database 

management 

Manufacturing 

execution 

systems, 

supply chain 

tracking 

Human 

Resource 

Management 

Manages 

employee 

relations, 

recruitment, 

and 

organizational 

development. 

Workforce 

planning, 

employee 

productivity 

Employee 

satisfaction focus 

vs. system 

efficiency 

Employee 

performance 

tracking, time 

studies 

Workforce 

scheduling, 

training 

programs 

Logistics and 

Supply Chain 

Management 

Focuses on the 

flow of goods, 

services, and 

information. 

Inventory 

management, 

transportation 

optimization 

Tactical-level 

operations vs. 

strategic system 

optimization 

Inventory 

models, 

network design 

Distribution, 

procurement, 

demand 

forecasting 

Marketing Studies market 

research, 

consumer 

behavior, and 

promotion 

strategies. 

Customer-

centric 

product 

design, 

demand 

forecasting 

Consumer 

behavior focus vs. 

production and 

resource 

optimization 

Conjoint 

analysis, 

market 

segmentation 

Product 

development, 

sales 

forecasting 

Public Policy Develops and 

implements 

governmental 

and 

institutional 

regulations. 

Regulatory 

compliance, 

safety 

standards 

Policy formulation 

focus vs. 

operational 

execution 

Policy analysis, 

regulatory 

impact 

assessments 

Safety 

protocols, 

industry 

regulations 

Computer 

Science 

Studies 

computational 

theory, 

algorithm 

design, and 

software 

development. 

Automation, 

data analysis, 

and 

optimization 

tools 

Software focus vs. 

system-wide 

integration 

Programming, 

machine 

learning, 

algorithm 

development 

Real-time 

control 

systems, IoT 

integration 

Human Factors 

and 

Ergonomics 

Examines 

human 

capabilities 

and limitations 

in system 

design. 

Workstation 

design, 

human-

machine 

interaction 

Human-centric 

focus vs. broader 

system efficiency 

Task analysis, 

anthropometric 

studies 

Ergonomic 

tools, safety-

critical systems 

Operations 

Research (OR) 

Uses advanced 

analytical 

methods to 

optimize 

decision-

making. 

Optimization 

models, 

resource 

allocation 

Purely 

mathematical 

focus vs. practical 

system constraints 

Linear 

programming, 

simulation 

modeling 

Supply chain 

optimization, 

transportation 

planning 
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4.1 Strengthening the IE Profession 

The IE profession plays a pivotal role in optimizing complex systems, yet it often struggles 

with recognition and visibility compared to rival disciplines. To strengthen IE, it is essential to 

emphasize its unique ability to bridge the gap between engineering principles and business 

practices, focusing on systems thinking, process optimization, and human-centered design 

[216]. The advent of I4.0 and emerging paradigms like I5.0 present an unprecedented 

opportunity for IE to establish itself as a leading discipline by addressing contemporary 

challenges such as digital transformation, sustainability, and HMC. Fig. 6 illustrates four key 

strategies for strengthening the IE profession in the evolving industrial era, which are further 

discussed in this section. 

 

Fig. 6. Strategies for strengthening IE profession in the evolving industrial Era 

One of the critical steps to strengthening IE is enhancing its technological specialization. 

Industrial engineers must be equipped with advanced skills in areas such as DTs, IoT, AI, and 

BDA [215]. By integrating these technologies into IE curricula and professional practices, the 

field can expand its relevance and demonstrate its critical role in enabling smart manufacturing, 

SC resilience, and adaptive systems [213,217]. Establishing industry-specific certifications in 

these technologies can further enhance the professional credibility of IE practitioners [218]. 

In parallel, IE programs must adapt to market demands by offering dynamic and 

interdisciplinary curricula. Courses that incorporate sustainability metrics, LM, advanced 

simulation, and PdM are vital for preparing graduates to tackle modern industrial challenges. 

Embedding experiential learning through internships, capstone projects, and industry 

collaborations ensures that students gain practical exposure and develop problem-solving skills 

that are immediately applicable in the workforce [219–222]. 

Strengthening professional advocacy is equally crucial. Organizations such as the Institute 

of Industrial and Systems Engineers (IISE) should continue to lead efforts in promoting the 

profession through conferences, publications, and policy advocacy. Encouraging industrial 
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engineers to engage in research and innovation, especially in high-impact areas such as 

healthcare systems, energy optimization, and CE practices, will further demonstrate the 

profession's societal and economic value [223–225]. 

Strategic partnerships with industry, government, and academic institutions are essential 

for advancing the IE profession. These collaborations can provide funding for cutting-edge 

research, create co-operation opportunities, and position IE as a key contributor to national and 

global development strategies. By focusing on these areas, the IE profession can solidify its 

position as a cornerstone of modern engineering and a driver of innovation in the digital age 

[226,227]. 

Furthermore, integrating the concepts of Learning Factory, Operator 4.0, Operator 5.0, and 

Education 4.0 is crucial for strengthening IE profession. Learning Factories provide a hands-

on environment where students and professionals can bridge the gap between theoretical 

knowledge and practical applications of advanced manufacturing systems [228]. These 

facilities enable the development of skills in real-time problem-solving, data-driven decision-

making, and digital transformation [229]. The transition to Operator 4.0 emphasizes the 

augmentation of human capabilities through advanced technologies such as exoskeletons, AR, 

and AI-based assistance, fostering a symbiotic relationship between humans and machines 

[230]. Moving further, Operator 5.0 envisions a human-centric approach, promoting well-

being, creativity, and collaboration within smart manufacturing ecosystems [231]. Education 

4.0 complements these advancements by adopting flexible, student-centered learning 

paradigms that leverage digital tools, gamification, and experiential learning [232,233]. 

Together, these concepts foster an IE workforce that is adaptive, resilient, and equipped to 

navigate the challenges of I5.0, ultimately contributing to the growth and evolution of the 

profession. 

4.2 Positioning the IE Degree within Academic Institutions 

Positioning the IE degree effectively within academic institutions is critical to ensuring its 

relevance and competitiveness in an era of rapid technological advancement. The unique 

interdisciplinary nature of IE, combining engineering principles, systems optimization, and 

business insights, provides a solid foundation for addressing contemporary challenges. 

However, strategic actions are required to enhance its visibility, attract high-caliber students, 

and compete with well-established academic programs [232,234]. As illustrated in Fig. 7, 

positioning the IE degree within universities must align with the evolving industrial landscape, 

emphasizing the integration of emerging technologies and interdisciplinary approaches to meet 

industry demands. 

A key strategy is the continuous evolution of the IE curriculum to reflect modern industry 

demands. Universities must integrate courses that emphasize emerging technologies such as 

DTs, IoT, AI, and ML, aligning them with traditional IE strengths like OR, systems engineering, 

and LM. Additionally, sustainability and CE principles should be woven into the curriculum, 

showcasing IE’s role in fostering environmentally responsible and socially impactful systems 

[221]. 

Practical, hands-on learning is another critical factor for positioning the IE degree. 

Universities should offer experiential opportunities such as internships, cooperative education 

programs, and industry-sponsored capstone projects. These experiences not only prepare 

students for real-world challenges but also enhance their employability, making the degree 

more attractive to prospective students and their future employers. Moreover, the inclusion of 

advanced simulation tools like ARENA, Aspen Plus, and SolidWorks can help students master 

cutting-edge technologies and methods used in modern industries [235]. 
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Fig. 7. Positioning the IE degree within academic institutions to align with the evolving industrial landscape. 

To further elevate the IE degree, universities must foster partnerships with industries and 

government agencies. Such collaborations can create pathways for funded research, provide 

students with access to state-of-the-art facilities, and align academic programs with market 

needs. Establishing joint initiatives, such as research and development (R&D) hubs focused on 

smart manufacturing, logistics, and energy systems, would not only enhance the reputation of 

IE programs but also contribute to regional and national development [227,231]. 

Marketing and outreach efforts are equally important in positioning the IE degree. 

Universities should actively promote success stories of their IE graduates who have excelled 

in leadership, entrepreneurship, or innovative roles across various sectors. Highlighting the 

diversity of career opportunities available to IE graduates, such as roles in SCM, healthcare 

systems, and data analytics, can help dispel misconceptions about the scope of the degree and 

attract a broader pool of students [236–238]. 

Lastly, aligning IE programs with global accreditation standards, such as those set by 

ABET, ensures credibility and quality assurance. Participation in global university rankings, 

driven by research output, graduate employability, and industry impact, can further enhance 

the degree’s prestige. By adopting these strategies, universities can firmly establish the IE 

degree as a forward-looking, impactful, and indispensable academic program in the modern 

industrial landscape [239,240]. 

5. Future Research Directions 

The evolution of IE requires a robust research agenda to address emerging challenges and 

opportunities in an increasingly complex and technological world. This section outlines six 

promising areas for future research (Fig. 8): Human-AI Collaboration, Adaptive and Resilient 

Systems Design, Advanced Sustainability Models, Digital Twin Integration, Ethical and 

Inclusive Systems Design, and Quantum Computing in IE. These areas are crucial for driving 

innovation and ensuring that IE remains at the forefront of industrial transformation.  
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Fig. 8. Future research directions for driving innovation and sustainability in IE 

5.1 Human-AI Collaboration 

The integration of AI into IS has profoundly transformed decision-making and process 

management, fostering significant advancements in productivity, safety, and adaptability. 

However, the full potential of AI lies in seamless collaboration with human expertise, 

emphasizing a symbiotic relationship where both human and machine capabilities enhance 

each other [25]. This collaboration, central to Industry 5.0, prioritizes human-centric intelligent 

manufacturing systems by leveraging AI technologies such as generative AI and large language 

models (LLMs). These technologies offer human-like interaction, reasoning, and decision-

making capabilities, thus enhancing design, production, and service processes [241]. 

Human-AI coevolution, defined as a continuous feedback loop where human decisions 

influence AI models and vice versa, plays a pivotal role in modern industrial settings. This 

dynamic creates opportunities for tailored, data-driven solutions but also introduces complex 

systemic outcomes that require further exploration [242]. For instance, LLMs demonstrate 

potential as collaborative partners, aiding human operators in perception, learning, decision-

making, and execution. These advancements not only support real-time process optimization 

but also address safety and operational challenges by minimizing human error [243]. 

In safety-critical industries, AI-driven predictive and prescriptive models have shown 

promise in reducing human errors, thus enhancing reliability and operational resilience [243]. 

Future research should explore intelligent interfaces and tools that improve trust and 

transparency in human-AI interactions, particularly in industries where decision-making 

accuracy is critical. Such tools can facilitate safer working environments and more efficient 

operations by integrating real-time data analysis and human judgment [241]. 

Generative AI also offers significant potential for managerial practices, improving 

decision-making efficiency and fostering innovation. Studies indicate that high-quality 

information provided by conversational AI agents leads to better organizational performance 

and technological adaptation [244]. Moreover, AI-enabled systems are essential for sustainable 

manufacturing, as they support green SC collaboration and CE practices, thereby enhancing 

environmental outcomes [245]. 

The development of frameworks that optimize HAC is imperative for maximizing these 

benefits. As I5.0 continues to evolve, further research should focus on creating adaptive AI 

systems that align with organizational goals, foster worker satisfaction, and promote resource-

efficient, cost-effective production paradigms [25]. Such advancements will cement the role of 

HAC as a cornerstone of sustainable, human-centric industrial operations. 
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5.2 Adaptive and Resilient Systems Design 

The design of adaptive and resilient systems is paramount for industrial operations to withstand 

disruptions, adapt to evolving conditions, and recover efficiently. As industries move toward 

I5.0, the focus shifts to human-centric and flexible production systems that integrate real-time 

feedback and decision-making capabilities. I5.0 emphasizes the dynamic allocation of 

resources and the seamless blending of physical and virtual environments, exemplified by the 

Industrial Metaverse, which enables collaborative and adaptive manufacturing processes [246]. 

Adaptive systems must respond dynamically to uncertainties such as SC disruptions, 

cyber-attacks, and environmental changes. Resilience can be enhanced through methodologies 

like redundancy optimization, PdM, and risk assessment, supported by advanced tools like 

multi-agent systems (MASs) and fault detection algorithms for robust consensus under 

adversarial conditions [28]. Real-time data-driven decision-making is critical for maintaining 

operational stability and performance. 

Emerging technologies such as AR further strengthen adaptability by providing real-time, 

human-centric guidance on the shop floor. AR systems offer step-by-step intuitive support, 

optimizing human-machine interactions while reducing cognitive load and assembly errors 

[247]. Additionally, the integration of ML and advanced analytics in multiscale modeling 

enables adaptive simulations for large-scale engineering problems, ensuring scalability and 

robustness in industrial applications [248]. 

Future research should focus on frameworks that combine human-centric design, real-time 

monitoring, and multi-objective optimization to enhance the resilience of cloud service 

processes, enabling rapid recovery and robustness in distributed design tasks. These 

advancements will not only optimize resource allocation but also ensure the seamless operation 

of adaptive systems in the face of disruptions, fostering a resilient and efficient industrial 

ecosystem [246,247]. 

5.3 Advanced Sustainability Models 

As sustainability becomes a critical priority for industries, future research in IE must emphasize 

the development of advanced sustainability models that quantify environmental, economic, and 

social impacts. I4.0 technologies, such as AM, BDA, IoT, cloud computing, and AI, have 

emerged as pivotal enablers for sustainable manufacturing. These technologies account for a 

significant portion of the sustainability efforts in modern industries, as they facilitate efficient 

resource utilization, waste minimization, and energy-efficient production processes [249]. 

A key focus of sustainability models is the integration of CE principles, which promote 

resource reuse and recycling while minimizing waste and energy consumption. These models 

should embed decision-making frameworks that align with global sustainability goals, such as 

the United Nations SDGs. By employing advanced metrics, such as the Technology Driven 

Sustainability Index (TDSI), industries can effectively measure and track their sustainability 

progress along their I4.0 transformation journey [249]. 

Moreover, the decoupling of economic growth from environmental degradation remains a 

pressing challenge for energy-intensive manufacturing sectors. Under the I4.0 paradigm, edge-

cloud cooperation and BDA can be leveraged to develop integrated sustainability benchmarks, 

providing real-time information for assessing the relationship between economic growth and 

carbon emissions. These benchmarks enable industries to monitor and optimize their 

production processes, reducing their carbon footprint while enhancing economic and social 

sustainability [19]. 

Future research should focus on designing holistic sustainability models that incorporate 

environmental, economic, and social dimensions. By integrating advanced technologies and 

decision-making tools, these models can empower industries to reduce their environmental 
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impact, foster social responsibility, and drive sustainable economic growth, thus contributing 

to the achievement of the SDGs. 

5.4 Ethical and Inclusive Systems Design 

The rise of I5.0 emphasizes the need for human-centric IS, where ethical considerations and 

inclusivity play a central role. Future research should focus on designing frameworks and 

methodologies that prioritize equitable access to technology, worker well-being, and the 

minimization of social inequalities in industrial operations. TAI serves as a cornerstone in 

achieving this vision, ensuring that the integration of AI in industrial systems remains 

transparent, accountable, and participatory [189].  

Ethical system design should address issues such as fairness, privacy, autonomy, and 

transparency. In the context of Human-Centered AI (HCAI), these principles foster trust and 

ensure that AI applications enhance, rather than replace, human capabilities [250]. Moreover, 

adopting a human-centric approach to HRC on manufacturing floors requires ethical 

frameworks that promote psychological safety and emphasize accountability in design and 

innovation processes [12].  

Inclusivity metrics should be integrated into system evaluations to ensure that industrial 

technologies benefit all stakeholders, including marginalized communities. These metrics can 

be used to assess the ethical implications of design decisions and identify gaps in accessibility 

and equity. Personalized and ethical AI practices, which have demonstrated success in 

enhancing user adoption in fields like tourism, also hold significant potential in fostering 

inclusivity in industrial contexts [148]. 

By embedding these ethical and inclusive principles into the core of IS design, the IE field 

can drive the creation of systems that are efficient, sustainable, and socially responsible. This 

alignment will not only enhance worker well-being but also contribute to broader societal 

goals, reinforcing the importance of fairness, equity, and inclusivity in shaping the future of 

I5.0. 

5.5 Digital Twins Integration 

DTs are revolutionizing industrial operations by bridging the physical and digital realms, 

offering real-time insights and predictive capabilities. As I5.0 evolves, the integration of DTs 

into IS becomes increasingly critical. Future research should focus on seamlessly embedding 

DTs across the entire product lifecycle, from design and manufacturing to operation and end-

of-life management. This requires developing interoperable DT platforms, enhancing data 

accuracy, and implementing secure real-time synchronization between physical and virtual 

systems [251]. 

The potential of DTs is further amplified when integrated with the industrial metaverse, 

which creates a data-centric and semantic-enhanced framework for factory-scale applications. 

By enabling dynamic knowledge synchronization and optimizing data flow, the industrial 

metaverse can transform material tracking and process monitoring in manufacturing [251]. 

Furthermore, advancements in human-centric systems, such as Human Digital Twins (HDTs), 

offer comprehensive frameworks for monitoring worker well-being, enhancing safety, and 

optimizing HRC [17,252]. 

Integrating DTs with advanced simulation tools, IoT sensors, and ML enhances their 

ability to predict and optimize system performance. For example, in AM, DTs coupled with 

ML have improved process monitoring, defect detection, and real-time decision-making [253]. 

Additionally, adopting standardized frameworks, such as the Asset Administration Shell 

(AAS), ensures dynamic monitoring and control, enabling comprehensive I4.0 scenarios, as 

demonstrated in smart warehouse systems [254]. 
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Addressing challenges such as real-time data synchronization, secure data transfers, and 

behavioral modeling is essential to fully realize the potential of DTs. Ethical concerns, 

including data privacy and consent, must also be prioritized for widespread adoption. By 

advancing these capabilities, DTs will enable industries to optimize processes, reduce 

downtime, enhance product quality, and contribute to the broader goals of sustainability and 

operational efficiency [83,255]. 

5.6 Quantum Computing in IE 

Quantum computing (QC) offers transformative potential for solving complex optimization 

problems that are currently beyond the reach of classical computing. In the context of IE, QC 

can revolutionize areas such as SC optimization, manufacturing process simulations, and 

energy-efficient production systems. For instance, breakthroughs in quantum convex 

optimization and ML could provide innovative solutions to challenges in power system 

planning and operation [31]. Similarly, quantum-enhanced algorithms for resource allocation 

and predictive analytics could improve the precision and efficiency of sustainable agricultural 

systems [256]. 

Recent advancements also highlight the applicability of quantum metaheuristic algorithms 

in addressing large-scale industrial challenges, including energy efficiency and path planning 

[257]. Furthermore, quantum simulations could enhance the design and performance of IS by 

offering unprecedented computational power and parallelism [29]. However, significant 

research is needed to address practical implementation challenges, scalability, and the 

development of quantum-safe environments [258]. By harnessing QC’s potential, IE can 

unlock new frontiers of innovation and efficiency. 

6. Conclusion 

IE has continually evolved to meet the demands of a changing world, from its early foundations 

in work organization and logistics to its pivotal role in the digital and sustainable revolutions 

of I4.0 and I5.0. This transformation has been driven by the integration of advanced 

technologies, including AI, IoT, DTs, and QC, which have revolutionized production systems, 

SCs, and decision-making processes. I4.0 introduced CPS and data-driven automation, while 

I5.0 builds on these advancements to emphasize human-centric, ethical, and sustainable 

industrial practices. The discipline's ability to optimize complex systems and adapt to emerging 

challenges positions it as a leader in driving industrial innovation and sustainability. Resilience 

engineering, data analytics, automation, and sustainability models have demonstrated the 

potential to enhance operational efficiency, reduce environmental impacts, and foster HMC. 

Moreover, IE’s interdisciplinary nature enables it to address critical global challenges such as 

resource scarcity, climate change, and the need for inclusive economic growth. 

Advancing the IE profession and academic programs is essential to maintain its relevance 

and impact. By modernizing curricula, fostering industry partnerships, and promoting the 

profession’s unique contributions, IE can attract top talent and remain a cornerstone of 

technological and societal progress. Furthermore, addressing ethical considerations, bridging 

digital divides, and enhancing cybersecurity will ensure that IE leads the way in building 

resilient, sustainable, and inclusive industrial ecosystems. IE stands at the nexus of innovation 

and sustainability, uniquely equipped to shape the future of industry. By embracing 

technological advancements and prioritizing human-centric and ethical practices, the discipline 

is poised to lead the transformation of IS, addressing global challenges and contributing to a 

sustainable and inclusive future. This evolution marks a pivotal moment for IE, positioning it 

as a key driver of progress in the digital and sustainable era. 
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